Spinors and lambda lengths

Daniel V. Mathews

Nanyang Technological University, Monash University dan.v.mathews@gmail.com

National University of Singapore 9 December 2024

This talk

• attempts to explain the picture on the title slide!,

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler on spinors and relativity theory from the 1980s <u>Spinors and</u> <u>Spacetime</u>,

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler on spinors and relativity theory from the 1980s <u>Spinors and</u> <u>Spacetime</u>,
- finds some nice hyperbolic geometry,
- extends lambda lengths to 3 dimensions and computes them in terms of spinors, and

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler on spinors and relativity theory from the 1980s <u>Spinors and</u> <u>Spacetime</u>,
- finds some nice hyperbolic geometry,
- extends lambda lengths to 3 dimensions and computes them in terms of spinors, and
- (time permitting) discusses some applications knot theory, circle packing, higher dimensions.

This talk

- attempts to explain the picture on the title slide!,
- builds on work of Roger Penrose and Wolfgang Rindler on spinors and relativity theory from the 1980s <u>Spinors and</u> <u>Spacetime</u>,
- finds some nice hyperbolic geometry,
- extends lambda lengths to 3 dimensions and computes them in terms of spinors, and
- (time permitting) discusses some applications knot theory, circle packing, higher dimensions.

Acknowledgments:

- This talk discusses work also involving Josh Howie, Dionne Ibarra, Jessica Purcell, Lecheng Su, Varsha, Orion Zymaris.
- Varsha helped draw many of the pictures.

Penrose-Rindler

General ideology: don't use vectors for geometry/relativity, use spinors for everything!

Penrose-Rindler

General ideology: don't use vectors for geometry/relativity, use spinors for everything!

Cast of characters:

- Spinors / spin vectors: elements $\kappa = (\xi, \eta)$ of \mathbb{C}^2 .
- <u>2 × 2 Hermitian matrices</u>: $\mathcal{H} = \{A \in M_{2 \times 2}(\mathbb{C}) \mid A = A^*\}.$
- Minkowski space $\mathbb{R}^{3,1}$: coordinates (T, X, Y, Z), metric $dT^2 dX^2 dY^2 dZ^2$.

Spinors
$$\xrightarrow{\phi_1}$$
 $\begin{array}{c} 2 \times 2 \text{ Hermitian} \\ \text{matrices} \\ \mathbb{C}^2 \\ \mathcal{H} \\ \end{array} \xrightarrow{\phi_2} \\ \begin{array}{c} \text{Minkowski space} \\ \mathbb{R}^{3,1} \\ \end{array}$

$$\phi_1\begin{pmatrix}\xi\\\eta\end{pmatrix} = \begin{pmatrix}\xi\\\eta\end{pmatrix} (\overline{\xi} \quad \overline{\eta})$$

Spinors
$$\xrightarrow{\phi_1} \xrightarrow{2 \times 2} \underset{\text{matrices}}{\text{matrices}} \xrightarrow{\phi_2} \text{Minkowski space}$$

$$\mathbb{C}^2 \qquad \mathcal{H} \qquad \mathbb{R}^{3,1}$$

$$\phi_1 \begin{pmatrix} \xi \\ \eta \end{pmatrix} = \begin{pmatrix} \xi \\ \eta \end{pmatrix} (\overline{\xi} \ \overline{\eta}) = \begin{pmatrix} |\xi|^2 \ \xi \overline{\eta} \\ \eta \overline{\xi} \ |\eta|^2 \end{pmatrix}$$

$$\begin{array}{cccc} \text{Spinors} & \stackrel{\phi_1}{\longrightarrow} & \begin{array}{c} 2 \times 2 \text{ Hermitian} & \stackrel{\phi_2}{\longrightarrow} & \text{Minkowski space} \\ & & & \\ \mathbb{C}^2 & \mathcal{H} & & \\ & &$$

• Image ϕ_1 = Herm. matrices with det 0 & trace \geq 0

$$\phi_1\begin{pmatrix}\xi\\\eta\end{pmatrix} = \begin{pmatrix}\xi\\\eta\end{pmatrix} (\overline{\xi} \quad \overline{\eta}) = \begin{pmatrix}|\xi|^2 & \xi\overline{\eta}\\\eta\overline{\xi} & |\eta|^2\end{pmatrix}$$

•
$$\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = \boldsymbol{e}^{i\theta}\kappa'$$

 $\begin{array}{ccc} \text{Spinors} & \stackrel{\phi_1}{\longrightarrow} & \begin{array}{c} 2 \times 2 \text{ Hermitian} & \stackrel{\phi_2}{\longrightarrow} & \text{Minkowski space} \\ & & \\ \mathbb{C}^2 & & \\ \mathcal{H} & & \\ \end{array} \end{array} \xrightarrow{\left. \begin{array}{c} \mathbb{R}^{3,1} \end{array}} \end{array}$

$$\phi_1\begin{pmatrix}\xi\\\eta\end{pmatrix} = \begin{pmatrix}\xi\\\eta\end{pmatrix} (\overline{\xi} \quad \overline{\eta}) = \begin{pmatrix}|\xi|^2 & \xi\overline{\eta}\\\eta\overline{\xi} & |\eta|^2\end{pmatrix}$$

• Image ϕ_1 = Herm. matrices with det 0 & trace \geq 0

• $\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = \boldsymbol{e}^{i\theta}\kappa'$

$$\phi_2\begin{pmatrix} T+Z & X+iY\\ X-iY & T-Z \end{pmatrix} = 2(T,X,Y,Z)$$

 $\begin{array}{ccc} \text{Spinors} & \stackrel{\phi_1}{\longrightarrow} & \begin{array}{c} 2 \times 2 \text{ Hermitian} & \stackrel{\phi_2}{\longrightarrow} & \text{Minkowski space} \\ & & \\ \mathbb{C}^2 & & \\ \mathcal{H} & & \\ \end{array} \end{array} \xrightarrow{\mathcal{P}_2} & \text{Minkowski space} \end{array}$

$$\phi_{1}\begin{pmatrix}\xi\\\eta\end{pmatrix} = \begin{pmatrix}\xi\\\eta\end{pmatrix} (\overline{\xi} \quad \overline{\eta}) = \begin{pmatrix}|\xi|^{2} & \xi\overline{\eta}\\\eta\overline{\xi} & |\eta|^{2}\end{pmatrix}$$

• Image ϕ_1 = Herm. matrices with det 0 & trace \geq 0

• $\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = \boldsymbol{e}^{i\theta}\kappa'$

$$\phi_2 \begin{pmatrix} T+Z & X+iY \\ X-iY & T-Z \end{pmatrix} = 2(T,X,Y,Z)$$

• Linear isomorphism: " \mathcal{H} is $\mathbb{R}^{3,1}$ ", "det = norm", "tr = T".

 $\begin{array}{ccc} \text{Spinors} & \stackrel{\phi_1}{\longrightarrow} & \begin{array}{c} 2 \times 2 \text{ Hermitian} & \stackrel{\phi_2}{\longrightarrow} & \text{Minkowski space} \\ & & \\ \mathbb{C}^2 & & \\ \mathcal{H} & & \\ \end{array} \end{array} \xrightarrow{\mathcal{P}_2} & \text{Minkowski space} \end{array}$

$$\phi_{1}\begin{pmatrix}\xi\\\eta\end{pmatrix} = \begin{pmatrix}\xi\\\eta\end{pmatrix} (\overline{\xi} \quad \overline{\eta}) = \begin{pmatrix}|\xi|^{2} & \xi\overline{\eta}\\\eta\overline{\xi} & |\eta|^{2}\end{pmatrix}$$

• Image
$$\phi_1$$
 = Herm. matrices with det 0 & trace \geq 0

• $\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = \boldsymbol{e}^{i\theta}\kappa'$

$$\phi_2\begin{pmatrix} T+Z & X+iY\\ X-iY & T-Z \end{pmatrix} = 2(T,X,Y,Z)$$

- Linear isomorphism: " \mathcal{H} is $\mathbb{R}^{3,1}$ ", "det = norm", "tr = *T*".
- Image $\phi (= \phi_2 \circ \phi_1) = \text{pos. light cone } L^+ (\tau^2 x^2 y^2 z^2 = 0, \tau \ge 0)$

 $\begin{array}{ccc} \text{Spinors} & \stackrel{\phi_1}{\longrightarrow} & \begin{array}{c} 2 \times 2 \text{ Hermitian} & \stackrel{\phi_2}{\longrightarrow} & \text{Minkowski space} \\ & & \\ \mathbb{C}^2 & & \\ \mathcal{H} & & \\ \end{array} \end{array} \xrightarrow{\mathcal{P}_2} & \text{Minkowski space} \end{array}$

$$\phi_{1}\begin{pmatrix}\xi\\\eta\end{pmatrix} = \begin{pmatrix}\xi\\\eta\end{pmatrix} (\overline{\xi} \quad \overline{\eta}) = \begin{pmatrix}|\xi|^{2} & \xi\overline{\eta}\\\eta\overline{\xi} & |\eta|^{2}\end{pmatrix}$$

• Image ϕ_1 = Herm. matrices with det 0 & trace \geq 0

• $\phi_1(\kappa) = \phi_1(\kappa') \Leftrightarrow \kappa = \boldsymbol{e}^{i\theta}\kappa'$

$$\phi_2 \begin{pmatrix} T+Z & X+iY \\ X-iY & T-Z \end{pmatrix} = 2(T,X,Y,Z)$$

- Linear isomorphism: " \mathcal{H} is $\mathbb{R}^{3,1}$ ", "det = norm", "tr = T".
- Image $\phi (= \phi_2 \circ \phi_1) = \text{pos. light cone } L^+ (T^2 X^2 Y^2 Z^2 = 0, T \ge 0)$
- Pauli matrices, Hopf fibration, stereographic proj. are here

We understand some of the picture now

From $\kappa \in \mathbb{C}^2$, get a point $\phi(\kappa) = p$ on L^+ .

Definition (Penrose–Rindler)

A <u>pointed null flag</u> is an oriented flag $\mathbb{R}p \subset V$, where $p \in L^+$, $\mathbb{R}p$ is future oriented, and V is a 2-plane tangent to L^+ .

Definition (Penrose-Rindler)

A <u>pointed null flag</u> is an oriented flag $\mathbb{R}p \subset V$, where $p \in L^+$, $\mathbb{R}p$ is future oriented, and V is a 2-plane tangent to L^+ .

Penrose-Rindler:

• Defined Φ and showed it is surjective and 2–1.

We understand more of the picture now

From $\kappa \in \mathbb{C}^2$, get a point on L^+ and a pointed null flag there.

Definition (Penrose-Rindler)

A <u>pointed null flag</u> is an oriented flag $\mathbb{R}p \subset V$, where $p \in L^+$, $\mathbb{R}p$ is future oriented, and V is a 2-plane tangent to L^+ .

Penrose-Rindler:

• Defined Φ and showed it is surjective and 2–1.

Definition (Penrose-Rindler)

A <u>pointed null flag</u> is an oriented flag $\mathbb{R}p \subset V$, where $p \in L^+$, $\mathbb{R}p$ is future oriented, and V is a 2-plane tangent to L^+ .

Penrose-Rindler:

Defined Φ and showed it is surjective and 2–1.

Spinoriality:

- Take $\kappa \in \mathbb{C}^2$ and consider rotating it: $e^{i\theta}\kappa$.
- $\phi(e^{i\theta}\kappa)$ is constant but $\Phi(e^{i\theta}\kappa)$ is not: plane V rotates.
- As κ rotates by θ , *V* rotates by 2θ .

In $\mathbb{R}^{3,1}$, consider the set of points 1 in the future from the origin.

$$T^2 - X^2 - Y^2 - Z^2 = 1$$
, $T > 0$

This spacelike 3-dimensional hypersurface is the <u>hyperboloid</u> model \mathbb{H}^3 of hyperbolic 3-dimensional geometry.

In $\mathbb{R}^{3,1}$, consider the set of points 1 in the future from the origin.

$$T^2 - X^2 - Y^2 - Z^2 = 1$$
, $T > 0$

This spacelike 3-dimensional hypersurface is the <u>hyperboloid</u> model \mathbb{H}^3 of hyperbolic 3-dimensional geometry.

In $\mathbb{R}^{3,1}$, consider the set of points 1 in the future from the origin.

$$T^2 - X^2 - Y^2 - Z^2 = 1$$
, $T > 0$

This spacelike 3-dimensional hypersurface is the <u>hyperboloid</u> model \mathbb{H}^3 of hyperbolic 3-dimensional geometry.

The orientation-preserving linear transformations of $\mathbb{R}^{3,1}$ which preserve L^+ form $SO(3,1)^+ \cong PSL(2,\mathbb{C}) \cong Isom^+(\mathbb{H}^3)$.

Brilliant geometers |

Minkowski space master

Brilliant geometers |

$\left\{ \begin{array}{l} {\rm Minkowski\ space\ master} \\ {\rm Brilliant\ geometers} \mid \end{array} \right\} \\ \end{array}$

 $\left\{ \begin{array}{l} {\rm Brilliant\ geometers} \mid & \begin{array}{l} {\rm Minkowski\ space\ master} \\ {\rm Enlightening\ interpretation\ of\ } L^+ \\ {\rm Hyperbolic\ geometry\ fan } \end{array} \right\}$

Brilliant geometers |Minkowski space master
Enlightening interpretation of L+
Hyperbolic geometry fan
Name matching Ro?er* Pen*r*

 $\left\{ \begin{array}{l} \text{Brilliant geometers} \mid & \begin{array}{l} \text{Minkowski space master} \\ \text{Enlightening interpretation of } L^+ \\ \text{Hyperbolic geometry fan} \\ \text{Name matching Ro?er* Pen*r*} \end{array} \right\}$
$\left| \left\{ \begin{array}{l} \text{Minkowski space master} \\ \text{Brilliant geometers} \mid & \\ \text{Hyperbolic geometry fan} \\ \text{Name matching Ro?er* Pen*r*} \end{array} \right\} \right| > 1$

Robert Penner

• To
$$p \in L^+$$
 associate the plane $\langle p, x \rangle = 1$

Robert Penner

• To $p \in L^+$ associate the <u>plane</u> $\langle p, x \rangle = 1$

• The plane intersects <u>hyperbolic space</u> \mathbb{H}^3 $(\tau^2 - x^2 - y^2 - z^2 = 1, \tau > 0)$ in a <u>horosphere</u>

Robert Penner

• To $p \in L^+$ associate the <u>plane</u> $\langle p, x \rangle = 1$

• The plane intersects <u>hyperbolic space</u> \mathbb{H}^3 $(\tau^2 - x^2 - y^2 - z^2 = 1, \tau > 0)$ in a <u>horosphere</u>

 $\kappa \in \mathbb{C}^2 \xrightarrow{\text{Penrose-Rindler}} \begin{array}{c} \text{Pointed null flags} \\ (= p \in L^+_{\text{ and flag}}) \xrightarrow{\text{Penner}} \text{Horospheres with } \cdots$

Robert Penner

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Spinor-horosphere correspondence

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Directions?

Spinor-horosphere correspondence

Theorem (M., arxiv:2308.09233)

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Directions?

• A <u>direction</u> on a horosphere is a parallel unit vector field.

(Only makes sense since a horosphere is isometric to the Euclidean plane!)

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Directions?

• A <u>direction</u> on a horosphere is a parallel unit vector field.

(Only makes sense since a horosphere is isometric to the Euclidean plane!)

Spin direction?

- A horosphere has " 2π worth" of possible directions.
- These lift to " 4π worth" of possible spin directions. (2π rotation is not the identity, but 4π is...)

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Directions?

• A <u>direction</u> on a horosphere is a parallel unit vector field.

(Only makes sense since a horosphere is isometric to the Euclidean plane!)

Spin direction?

- A horosphere has " 2π worth" of possible directions.
- These lift to " 4π worth" of possible spin directions. (2π rotation is not the identity, but 4π is...)

More rigorously:

- Directions = certain frame fields along horosphere.
- Spin directions = lifts from frame bundle to spin double cover.

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

In the upper half space model, a simple description:

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

In the upper half space model, a simple description:

There is a natural (SL(2, \mathbb{C})-equivariant) bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

In the upper half space model, a simple description:

(when $\eta = 0$, horizontal plane centred at ∞ at height $|\xi|^2$ and direction $i\xi^2$)

There is a natural $SL(2, \mathbb{C})$ -equivariant bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

There is a natural $SL(2, \mathbb{C})$ -equivariant bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Group actions here:

There is a natural $SL(2, \mathbb{C})$ -equivariant bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Group actions here:

• $SL(2,\mathbb{C})$ acts on \mathbb{C}^2 by linear transformations

There is a natural $SL(2, \mathbb{C})$ -equivariant bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Group actions here:

- $SL(2,\mathbb{C})$ acts on \mathbb{C}^2 by linear transformations
- PSL(2, C) acts on ℍ³ (hence horospheres, hence decorated horospheres) by isometries

There is a natural $SL(2, \mathbb{C})$ -equivariant bijection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \{\text{Horospheres in } \mathbb{H}^3 \text{ with spin directions}\}.$

Group actions here:

- $SL(2,\mathbb{C})$ acts on \mathbb{C}^2 by linear transformations
- $PSL(2,\mathbb{C})$ acts on \mathbb{H}^3 (hence horospheres, hence decorated horospheres) by isometries
- SL(2, C) acts on H³ by spin isometries (2π rotation ≠ identity, 4π rotation = identity), hence spin directions

Complex 3D lambda lengths

Now consider two spin vectors and two horospheres.

• Spin vectors have a natural antisymmetric bilinear form,

 $\{\kappa,\omega\}=\det(\kappa,\omega),$

making \mathbb{C}^2 into a complex symplectic vector space.

• Spin vectors have a natural antisymmetric bilinear form,

 $\{\kappa,\omega\} = \det(\kappa,\omega),$

making \mathbb{C}^2 into a complex symplectic vector space.

- Between two corresponding horospheres
 - there is a distance d
 - there is an angle θ between directions (mod 2π).
 - there is an angle θ between spin directions (mod 4π).

• Spin vectors have a natural antisymmetric bilinear form,

 $\{\kappa,\omega\} = \det(\kappa,\omega),$

making \mathbb{C}^2 into a complex symplectic vector space.

- Between two corresponding horospheres
 - there is a distance d
 - there is an angle θ between directions (mod 2π).
 - there is an angle θ between spin directions (mod 4π).

Theorem (M.)

$$\{\kappa,\omega\} = e^{\frac{d+i\theta}{2}}$$

• Spin vectors have a natural antisymmetric bilinear form,

 $\{\kappa,\omega\} = \det(\kappa,\omega),$

making \mathbb{C}^2 into a complex symplectic vector space.

- Between two corresponding horospheres
 - there is a distance d
 - there is an angle θ between directions (mod 2π).
 - there is an angle θ between spin directions (mod 4π).

Theorem (M.)

$$\{\kappa,\omega\} = e^{\frac{d+i\theta}{2}}$$

Generalises Penner's $\underline{\lambda}$ -lengths in \mathbb{H}^2 :

$$\lambda = e^{d/2}.$$

Ptolemy, <u>Almagest</u> (\sim 160 CE): For a cyclic quadrilateral *ABCD* in the Euclidean plane,

$AC \cdot BD = AB \cdot CD + AD \cdot BC.$

Ptolemy, <u>Almagest</u> (\sim 160 CE): For a cyclic quadrilateral *ABCD* in the Euclidean plane,

 $AC \cdot BD = AB \cdot CD + AD \cdot BC.$

Numbering $(A, B, C, D) \sim (0, 1, 2, 3)$ and denoting distance d_{ij} ,

 $d_{02}d_{13} = d_{01}d_{23} + d_{03}d_{12}.$

Penner, 1987: Given four horocycles in the hyperbolic plane with lambda lengths λ_{ij} , $i, j \in \{0, 1, 2, 3\}$,

$$\lambda_{02}\lambda_{13} = \lambda_{01}\lambda_{23} + \lambda_{03}\lambda_{12}.$$

Theorem (M., arxiv:2308.09233)

Given an ideal tetrahedron in \mathbb{H}^3 , with spin-decorated horospheres h_0 , h_1 , h_2 , h_3 at its vertices, the lambda lengths $\lambda_{ij} \in \mathbb{C}$ betweeen h_i and h_j satisfy

 $\lambda_{02}\lambda_{13} = \lambda_{01}\lambda_{23} + \lambda_{03}\lambda_{12}.$

Theorem (M., arxiv:2308.09233)

Given an ideal tetrahedron in \mathbb{H}^3 , with spin-decorated horospheres h_0 , h_1 , h_2 , h_3 at its vertices, the lambda lengths $\lambda_{ij} \in \mathbb{C}$ betweeen h_i and h_j satisfy

 $\lambda_{02}\lambda_{13} = \lambda_{01}\lambda_{23} + \lambda_{03}\lambda_{12}.$

Proof: Plücker relation between 2×2 determinants in a 2×4 matrix.

Lower & higher dimensions

When spinors $(\xi, \eta) \in \mathbb{R}^2$ have <u>real</u> coordinates, they correspond to horocycles in \mathbb{H}^2 .

Well-known progression

Dimension n	2	3	
Isometries of ⊞ ⁿ	Ð	C	
= PSL(2,?)	1112	C	
Spinors in?	\mathbb{R}^2	\mathbb{C}^2	

Lower & higher dimensions

When spinors $(\xi, \eta) \in \mathbb{R}^2$ have <u>real</u> coordinates, they correspond to horocycles in \mathbb{H}^2 .

Well-known progression (& less well known... Ahlfors, Lounesto, Cao, Gongopadhyay, Kellerhals, ...):

Dimension n	2	3	4	many
Isometries of \mathbb{H}^n = $PSL(2,?)$	\mathbb{R}	\mathbb{C}	"H"	"Γ _n "
Spinors in?	ℝ ²	\mathbb{C}^2		?

Lower & higher dimensions

When spinors $(\xi, \eta) \in \mathbb{R}^2$ have <u>real</u> coordinates, they correspond to horocycles in \mathbb{H}^2 .

Well-known progression (& less well known... Ahlfors, Lounesto, Cao, Gongopadhyay, Kellerhals, ...):

Dimension <i>n</i>	2	3	4	many
Isometries of \mathbb{H}^n	R	\mathbb{C}	" H I"	"Га"
= PSL(2,?)				- 11
Spinors in?	\mathbb{R}^2	\mathbb{C}^2		?

(Very) recent work with Varsha: all of the above works in 4D hyperbolic space with quaternions.

Ongoing work with Zymaris: some (all?) of the above works in aribtrary dimension with Clifford algebras.

Theorem (M.–Varsha, forthcoming)

There are smooth $SL(2, \Gamma)$ -equivariant bijections between

- 1 quaternionic spinors
- 2 spin multiflags
- **3** spin-deocrated horospheres in \mathbb{H}^4 .

Theorem (M.–Varsha, forthcoming)

Given two quaternionic spinors $\kappa_1 = (\xi_1, \eta_1)$, $\kappa_2 = (\xi_2, \eta_2)$, there is a well defined quaternionic lambda length λ_{12} between the corresponding spin-decorated horospheres, and

$$\lambda_{12} =$$
 "det" $\begin{pmatrix} \xi_1 & \xi_2 \\ \eta_1 & \eta_2 \end{pmatrix} = \xi_1^* \eta_2 - \eta_1^* \xi_2.$

Theorem (M.–Varsha, forthcoming)

Given an ideal tetrahedron with spin-deocrated horospheres at the vertices and lambda lengths λ_{ij} ,

$$\lambda_{02}^{-1}\lambda_{01}\lambda_{31}^{-1}\lambda_{32} + \lambda_{02}^{-1}\lambda_{03}\lambda_{13}^{-1}\lambda_{12} = 1.$$

Proofs use work of Ahlfors, Lounesto, Maass, Vahlen on higher-dimensional Möbius transformations and Clifford algebras...

And work of Gel'fand–Retakh on non-commutative determinants...

Taking (ξ, η) to be relatively prime integers yields Ford circles and Farey fractions.

Taking (ξ, η) to be relatively prime Gaussian integers yields Ford spheres.

Spinors in knot complements

Let $M = S^3 - K$ where K is the figure-8 knot.

M has a well-known ideal triangulation and complete hyperbolic structure studied by Riley, W. Thurston, many others.

The developing map $\widetilde{M} \longrightarrow \mathbb{H}^3$ can be chosen to have ideal vertices precisely at points of $\mathbb{Q}(\sqrt{3})$.

Spinors in knot complements

Theorem (Howie–Ibarra–M.–Su, arxiv:2411.06368)

The spinors (ξ, η) consisting of relatively prime Eisenstein integers precisely give the horospheres bounding maximal cusp neighbourhoods in *M*.

Eisenstein integers = alg. integers in $\mathbb{Q}(\sqrt{3})$ = $\mathbb{Z}[\omega]$ where $\omega^2 + \omega + 1 = 0$.

Theorem (Howie–Ibarra–M.–Su, arxiv:2411.06368)

The λ lengths between spin-decorated horospheres in M are precisely the Eisenstein integers.

Theorem (Howie–Ibarra–M.–Su, arxiv:2411.06368)

The set of hyperbolic distances between maximal cusps in M is precisely

$$\left\{ 2 \log |\alpha| \ | \ \alpha \in \mathbb{Z}\left[\frac{1+i\sqrt{3}}{2}\right] \setminus \{\mathbf{0}\} \right\}$$

or

$$\left\{ \log n \mid \prod_{p} p^{k_{p}}, k_{p} \text{ even for } p \equiv 2 \mod 3 \right\}$$

Spinors and hyperbolic structures

Garoufalidis–D. Thurston–Zickert (2015) described <u>Ptolemy</u> varieties \mathcal{P}_N for ideally triangulated 3-manifolds *M*.

 $c_{02}c_{13} = c_{01}c_{23} + c_{03}c_{12}.$

They showed \mathcal{P}_N describes all boundary-unipotent representations $\pi_1(M) \to SL(N, \mathbb{C})$ up to conjugacy.

Spinors and hyperbolic structures

Garoufalidis–D. Thurston–Zickert (2015) described Ptolemy varieties \mathcal{P}_N for ideally triangulated 3-manifolds *M*.

 $c_{02}c_{13} = c_{01}c_{23} + c_{03}c_{12}.$

They showed \mathcal{P}_N describes all boundary-unipotent representations $\pi_1(M) \to SL(N, \mathbb{C})$ up to conjugacy.

Zickert (2016) introduced an <u>enhanced Ptolemy variety</u> and showed it describes all boundary-Borel representations $\pi_1(M) \longrightarrow SL(N, \mathbb{C}).$

$$\ell^{\bullet}m^{\bullet}c_{02}c_{13} = \ell^{\bullet}m^{\bullet}c_{01}c_{23} + \ell^{\bullet}m^{\bullet}c_{03}c_{12}.$$

Spinors and hyperbolic structures

Garoufalidis–D. Thurston–Zickert (2015) described Ptolemy varieties \mathcal{P}_N for ideally triangulated 3-manifolds *M*.

 $c_{02}c_{13} = c_{01}c_{23} + c_{03}c_{12}.$

They showed \mathcal{P}_N describes all boundary-unipotent representations $\pi_1(M) \to SL(N, \mathbb{C})$ up to conjugacy.

Zickert (2016) introduced an <u>enhanced Ptolemy variety</u> and showed it describes all boundary-Borel representations $\pi_1(M) \longrightarrow SL(N, \mathbb{C})$.

$$\ell^{\bullet}m^{\bullet}c_{02}c_{13} = \ell^{\bullet}m^{\bullet}c_{01}c_{23} + \ell^{\bullet}m^{\bullet}c_{03}c_{12}.$$

Theorem (M.–Purcell, in progress)

 λ -lengths of spin-decorated hyperbolic structures on M satisfy the equations of the SL(2, \mathbb{C}) enhanced Ptolemy variety.

Euclidean plane geometry!

Definition

An <u>*n*-flower</u> consists of a central circle C_{∞} , and n <u>petal</u> circles C_j (j mod n), externally tangent to each other as shown.

Let $\kappa_{\bullet} = \frac{1}{r_{\bullet}^2}$ be the curvature of C_{\bullet} .

General theory of circle packings (Koebe, Andreev, W. Thurston, Beardon, Bowers, Stephenson, ...): if petal curvatures are given, κ_{∞} is determined.

Spinors and circle packings

Question: For an *n*-flower, do $\kappa_{\infty}, \kappa_1, \ldots, \kappa_n$ satisfy an equation?

Spinors and circle packings

Question: For an *n*-flower, do $\kappa_{\infty}, \kappa_1, \ldots, \kappa_n$ satisfy an equation?

Theorem (Descartes Circle Theorem, Descartes 1643) Yes, for n = 3!

$$\left(\kappa_{\infty}+\kappa_{1}+\kappa_{2}+\kappa_{3}\right)^{2}=2\left(\kappa_{\infty}^{2}+\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right).$$

The sum of the squares of all four bends Is half the square of their sum – Frederick Soddy, <u>The Kiss Precise</u> (1936)

Theorem (M.-Zymaris, arxiv:2310.11701)

Yes, for all n!

Define m_0 and m_j for $1 \le j \le n-1$ as

$$m_0 = \sqrt{\frac{\kappa_0}{\kappa_\infty} + 1}, \quad m_j = \sqrt{\left(\frac{\kappa_j}{\kappa_\infty} + 1\right)\left(\frac{\kappa_{j-1}}{\kappa_\infty} + 1\right) - 1}.$$

Then

$$\frac{m_0^2 i}{2} \left(\prod_{j=1}^{n-1} (m_j - i) - \prod_{j=1}^{n-1} (m_j + i) \right) - \prod_{j=1}^{\frac{n-1}{2}} \left(m_{2j-1}^2 + 1 \right) = 0 \quad \text{for odd } n,$$

$$\frac{i}{2}\left(\prod_{j=1}^{n-1}(m_j-i)-\prod_{j=1}^{n-1}(m_j+i)\right)-\prod_{j=1}^{\frac{n-2}{2}}\left(m_{2j}^2+1\right)=0 \quad \text{for even } n.$$

Thanks for listening!

dan.v.mathews@gmail.com